Energy is subject to the law of conservation of energy. According to this law, energy can neither be created (produced) nor destroyed by itself. It can only be transformed.
Most kinds of energy (with gravitational energy being a notable exception)[10] are subject to strict local conservation laws as well. In this case, energy can only be exchanged between adjacent regions of space, and all observers agree as to the volumetric density of energy in any given space. There is also a global law of conservation of energy, stating that the total energy of the universe cannot change; this is a corollary of the local law, but not vice versa.[6][11] Conservation of energy is the mathematical consequence of translational symmetry of time (that is, the indistinguishability of time intervals taken at different time)[12] - see Noether's theorem.
According to Conservation of energy the total inflow of energy into a system must equal the total outflow of energy from the system, plus the change in the energy contained within the system.
This law is a fundamental principle of physics. It follows from the translational symmetry of time, a property of most phenomena below the cosmic scale that makes them independent of their locations on the time coordinate. Put differently, yesterday, today, and tomorrow are physically indistinguishable.
This is because energy is the quantity which is canonical conjugate to time. This mathematical entanglement of energy and time also results in the uncertainty principle - it is impossible to define the exact amount of energy during any definite time interval. The uncertainty principle should not be confused with energy conservation - rather it provides mathematical limits to which energy can in principle be defined and measured.
Researches show that the world has already had its enough shares of its energy resources. Fossil fuels pollute the environment. Nuclear energy requires careful handling of both raw as well as waste material. The focus now is shifting more and more towards the renewable sources of energy, which are essentially, nonpolluting.
Most kinds of energy (with gravitational energy being a notable exception)[10] are subject to strict local conservation laws as well. In this case, energy can only be exchanged between adjacent regions of space, and all observers agree as to the volumetric density of energy in any given space. There is also a global law of conservation of energy, stating that the total energy of the universe cannot change; this is a corollary of the local law, but not vice versa.[6][11] Conservation of energy is the mathematical consequence of translational symmetry of time (that is, the indistinguishability of time intervals taken at different time)[12] - see Noether's theorem.
According to Conservation of energy the total inflow of energy into a system must equal the total outflow of energy from the system, plus the change in the energy contained within the system.
This law is a fundamental principle of physics. It follows from the translational symmetry of time, a property of most phenomena below the cosmic scale that makes them independent of their locations on the time coordinate. Put differently, yesterday, today, and tomorrow are physically indistinguishable.
This is because energy is the quantity which is canonical conjugate to time. This mathematical entanglement of energy and time also results in the uncertainty principle - it is impossible to define the exact amount of energy during any definite time interval. The uncertainty principle should not be confused with energy conservation - rather it provides mathematical limits to which energy can in principle be defined and measured.
Researches show that the world has already had its enough shares of its energy resources. Fossil fuels pollute the environment. Nuclear energy requires careful handling of both raw as well as waste material. The focus now is shifting more and more towards the renewable sources of energy, which are essentially, nonpolluting.
Energy conservation is the cheapest new
source of energy. It is an attractive technology for optimal use of
available sources. This project attempts to show how energy can be
tapped and used at a commonly used system, the road-speed breakers. The
number of vehicles passing over the speed breaker in roads is increasing
day by day. There is possibility of tapping the energy and generating
power by making the speed breaker as a power generation unit.
- The generated power can be used for the lamps near the speed breakers.
Hence, a project work has been done in
our institution, implementing this idea practically under the title
“Design and Development of Power Generation Unit in Speed Breakers”.
This project explains clearly, the working principle of the designed
system, its practical implementation, and its advantages.
Design of each component has been
carried out using standard procedures, and the components have been
fabricated and assembled. A similar model of the system has been modeled
using Pro-E. Practical testing of the system has been done with
different loads at different speeds. Taking the various criteria that
determine the power generation, graphs have been plotted. The second
project will show you how to create a shoe that generates electricity.
It does this by using your energy when you walk and converts it into
electricity. Its just a simple craft that every one should know it.
0 comments:
Post a Comment